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induced time delay is observationally indistinguishable from an intrinsic 
time delay due to the lens geometry. 
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I. INTRODUCTION 

A stochastic background of gravitational waves of cosmological wavelengths may arise 

in the early Universe, for instance as a consequence of quantum effects during a period 

of inflationary expansion, or as the result of gravitational radiation by oscillating cosmic 

strings. Its presence could be manifested as a large angular scale microwave background, 

induced by the Sachs-Wolfe effect [l], the differential redshifting of photons in the presence 

of tensor metric perturbations. It is possible that a significant fraction of the anisotropy 

measured by the COBE DMR experiment [2] is due t,o cosmological gravitational waves. 

[3] So far, the microwave observations cannot determine how much of the anisotropy is 

due to tensor perturbations (gravitational waves) and how much to scalar (energy-density) 

fluctuations. 

Another potential method to reveal the presence of gravitational waves of cosmological 

wavelengths was recently suggested by Allen, [4,5] namely, to use measured time delays 

between gravitationally lensed multiple images of distant quasars. Gravitationally lensed 

multiple images of a source such as a quasar arrive at the Earth at different times if the 

source, deflector (the lensing body), and observer are not in perfect alignment, because 

there is a difference in geometric path lengths between, and in the deflector’s gravitational 

potential traversed by, the different light rays. We shall call these two effects the ‘intrinsic’ 

time delay of the lens. For a lens geometry where L is the distance between observer 

and deflector and 217 is the angular separation between the images, the typical intrinsic 

time delay is AT N L$. Any ‘extrinsic’ perturbation to the spacetime metric (i.e., not 

associated with the lens itself) would be expected to cause additional time delays between 

the images. For example, an additional time delay would be induced by a cosmological 

background of very long wavelength gravitational waves. [4,5] As shown by Allen, for waves 

with frequency w N L-l, the gravity wave-induced time delay is of order AT z L/q, where 

h is the dimensionless amplitude of the gravitational wave. Therefore, waves of amplitude 

h 2 17 would be expected to have drastic effects on lens time delays. 
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Based on this effect, .L\llen claimed that gravitational lenses could serve as gravitational 

wave detectors, [4,5] and that a bound could be placed on the amplitude of gravitational 

waves of cosmological wavelengths from the requirement that the wave-induced time delay 

in the double quasar 0957+561 not exceed the observed delay of 1.48 yr. [6] (The observed 

delay is generally attributed to the intrinsic delay of the lens.) For 0957+561, the image 

angular separation is 3 x 10m5 rad = 6.1 arcsec, and Allen obtained the bound h < 2 x 10m5. 

A gravity-wave background which nearly saturates the above bound would have important 

implications for gravitational lens models and would seriously compromise attempts to use 

lens time delays to measure the Hubble parameter. 

Subsequent to Allen’s work, the microwave anisotropy bound on the amplitude of cosmo- 

logical gravitational waves has been significantly tightened by COBE. Through the Sachs- 

Wolfe effect, gravitational waves induce a temperature anisotropy of order their dimen- 

sionless amplitude. From the COBE detection of the quadrupole anisotropy, it follows 

that. h 5 (JT/T)e=z z 6 x 10V6 for wavelengths comparable to the present Hubble radius, 

X- H;’ = 3000 h-’ Mpc. This bound is roughly a factor of three smaller than Allen’s 

limit. However, although 0957+561 is the first gravitational lens system for which a time 

delay has been reliably measured, other lens systems are also being monitored; in particular, 

for a lens with smaller image angular separation 17 and thus smaller intrinsic time delay, the 

wave-induced delay would be even more important, and the corresponding lens bound on 

h potentially more restrictive. Inflationary models suggest that a significant fraction of the 

quadrupole anisotropy could be due to gravitational waves [3,7]. If this is the case, then time 

delays induced by gravitational waves in gravitationally lensed quasars would be significant. 

In this paper, we reconsider Allen’s proposal. Our central theme is that, for messure- 

ments of time delays in gravitational lenses to serve as gravitational wave detectors, the 

observer must be able to separate the wave-induced time delay from the intrinsic time delay 

originating in the lens geometry. We discuss the feasibility of observationally distinguishing 

these two sources of time delay. We approach this issue through application of Fermat’s 

principle, a useful tool for analysing gravitational lens problems [8,9], which has recently 
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been shown to hold in the non-stationary space-times we consider [lO,ll]. We conclude that 

measurements of time delays in gravitational lenses are not likely to serve as a method to 

detect or constrain a cosmological background of gravitational waves, because the wave- 

induced time delay is observationally indistinguishable from the intrinsic time delay of an 

alternative lens geometry. As a consequence, the cosmological applications of lens time de- 

lays, e.g., inferring HO or galaxy masses. are not affected by gravity waves, regardless of 

the amplitude h. We note that, using quite different methods, the same conclusions were 

reached for general (scalar, vector, and tensor) metric perturbations by Frieman, Kaiser, 

and Turner. [12] 

In Refs. [4,5], the time delay induced by a gravitational wave upon a gravitational lens 

was evaluated through the Sachs-Wolfe formula [l] for the differential photon redshift in the 

presence of metric fluctuations, integrated along unperturbed photon paths, i.e., along the 

same trajectories the photons would have followed in the absence of the wave. As we will 

show, this method is not applicable in the case that the wave amplitude h is comparable 

to or larger than the angular separation 217 that the images would have in the absence of 

the wave, and the expression for the time [4,5] is valid only if h << 7. In the opposite limit, 

h >> II, the effect of the wave is equivalent to a change in the alignment of the system so 

large that multiple images do not form (at least for non-singular lens potentials). Thus, 

the wave-induced time delays never exceed typical intrinsic delays, and cannot be used to 

constrain the amplitude of cosmological gravitational waves. Moreover, even in cases where 

the wave-induced delay is comparable to the typical intrinsic delay, we will show that an 

observer would attribute the entire delay to the intrinsic lens geometry. Thus, the wave- 

induced delay cannot be unearthed in practice or in principle. 

To address these issues, we explicitly take into account the spatial distortion of the photon 

trajectories induced by the gravitational waves, which is non-negligible even if h << 7. 

The wave-induced perturbation of the photon paths gives rise to extra contributions to the 

time delay, in addition to the differential redshift along the two trajectories. The extra 

contributions arise as a consequence of difference in path lengths and different gravitational 
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potential traversed by each photon due to the asymmetry in their trajectories induced by 

the wave. When the dust settles, our result for the wave-induced time delay coincides with 

that of Refs. [4,5] because these extra terms cancel each other, but only in the limits h << 17 

and wLq < 1. Moreover. the spatial distortion of the photon paths is always very significant 

when it comes to the interpretation of lens observations: a gravitational wave distorts the 

apparent angular positions of the images relative to the deflector in just, such a way that an 

observer would attribute t.he wave-induced time delay to an intrinsic time delay associated 

with the image-deflector misalignment he or she sees. Since the lens geometry is not known a 

priori, but reconstructed from observations, one could equally well adjust the measurements 

to a given lens geometry in t,he presence of gravitational waves, or to an alternative lens 

geometry and no waves at all. Thus, it appears observationally impossible to distinguish 

wave-induced time delays from intrinsic delays, and so to detect cosmological gravitational 

waves through time delay measurements in gravitationally lensed quasars. 

II. TIME DELAY IN A SIMPLE LENS CONFIGURATION 

To more clearly display the features discussed above, we first analyze a simple lens model: 

a Schwarzschild (point mass) lens in a highly symmetric configuration, and a gravitational 

wave propagating perpendicular to the lens axis. In the next section we generalize the 

results derived here to the case of an arbitrary thin lens and arbitrary polarization and 

wave vector of the gravitational wave. Consider a static, spherical body of mass M, located 

at the origin of coordinates, that .deflects photonsemitted by a point-like source located 

at (zr = 0, y = 0, z = -L), and an observer onthe extension of the source-deflector line at 

(z = 0, y = 0, t = +L) (see Fig. 1). Given the axial symmetry, the observer sees an Einstein 

ring image of the source, with angular radius 17 zs J--T-. 2GW L Here, G is Newton’s constant, 

we take the speed of light c = 1, and we assume 7 << 1. To simplify the discussion, we focus 

on those photons that travel along the y = 0 plane, forming two images on opposite sides 

of the ring. In the absence of a gravitational wave, there is no time delay between the two 
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images, and t,hey arrive with an angular separation M = 277. Now consider a gravitational 

wave of dimensionless amplitude h and frequency in, with polarization (+), propagating 

along the z axis in the positive r direction. Sufficiently far from the deflector mass, the 

spacetime interval can be approximated by 

,js2= (+!?!)d~z-(l+~) (dz2 + dy2+ dz2) + hcosw(t - x)(dy’ - dz2) (2.1) 

Along a photon path, ds2 = 0. Thus, if the spatial photon trajectories z = z(z) were known, 

one could evaluate the time of travel by simple integration in z from -L to L, 

.~~~dz[l+;(~)2+;hcosu(t-r)+~] (2.2) 

To the level of approximation we shall be working (we are interested in terms of order hi 

in the time delay), t can be replaced in eq. (2.2) by t = t, + (z + L), with t, the time at 

which the photons were emitted at (z = 0, z = -L). The first two terms in the integrand of 

eq. (2.2) are the geometric contribution to the time of travel, while the third and fourth are 

contributions from the gravitational potential of the wave and the deflector respectively. 

A. Integration along unperturbed paths 

Let us first evaluate the time delay along unperturbed photon trajectories. We approxi- 

mate each path by straight segments, deflected by angle a = 2~ at the deflector plane z = 0 

(see Fig. 1). The approximation by straight segments is convenient and appropriate in 

the case of thin gravitational lenses, where-most of the deflection occurs in the immediate 

vicinity of the deflector plane [9]. ~The light trajectories are then 

x1,2 = lb/(” + L) z<o 

21.2 = F17(2 - L) 2>0 (2.3) 

where the subscript (1,2) distinguishes trajectories that pass along opposite sides of the 

deflector. Straightforward integration leads to the time of travel, Tr.2. Clearly, given the 
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symmetry of the integration paths, the only contribution to the time delay comes from the 

different gravitational wave potential encountered by each trajectory, i.e.. from the third 

term in the integrand of eq. (2.2). The time delay is 

AT = Tl - T2 = -~b4t, + 2L) + sin& - 2sinw(t, + ~~~~~~~~~ , (2.4) 

which, if wLn << 1, is approximated by 

AT x 42 sin2 sinw(t, + L) 

This coincides with the result of Ref. [4], evaluated by integration of the Sachs-Wolfe formula 

along the same unperturbed trajectories. 

The method used above to evaluate the time delay induced by the gravitational wave is 

questionable, even if h << 7, because the actual photon trajectories are perturbed by the 

wave, and are expected to be neither straight nor symmetric with respect to the lens axis. 

.4s a result, one path may have smaller impact parameter with respect to the deflector than 

the other, and hence be deflected by a larger angle. This asymmetry in the paths leads to 

differences in both the geometric and potential contributions to the time of travel as large 

as that evaluated above. We shall evaluate these extra contributions, after derivation of the 

lens equation through Fermat’s principle, and find that they cancel to leading order only if 

h < 7. Thus, eq. (2.5) is only valid in this limit (moreover, in this limit, the wave-induced 

delay would be swamped by the intrinsic delay if the perfectly aligned symmetric lens were 

replaced by a misaligned lens such as that in Fig. 2). Furthermore, we will show that, even 

in this limit, the delay (2.5) would be attributed by the observer to intrinsic lens delay, that 

is, to an apparent misalignment between source, deflector, and observer. 

To prepare for this result, we first briefly review the derivation of the lens equation and 

time delay for a misaligned lens in the absence of gravity waves. 
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B. Fermat’s principle for a Schwarzschild lens 

Fermat’s principle provides a useful shorkut in many lensing problems: one can approxi- 

mate the photon trajectories by null zig-zag trial paths and then extremize the time of travel 

[8,9], instead of solving the geodesic equations. Consider the lens depicted in Fig. 2. The 

source is at an angle p with respect to the line that joins observer and deflector, and in this 

subsection we assume there is no gravitational wave present. Consider a path that, starting 

from the source at z = -15, moves along a straight line up to the z = 0 plane, where it is 

deflected by an angle (I, and then arrives at the observer at z = L, forming an angle 0 with 

respect to the line that joins observer and deflector. The angles cr. @ and 0 must satisfy 

a = 2(8 - /3) (2.6) 

Assuming p, 0 << 1, the time of travel along such a null path would be 

T=2L+B2L-2@lL-4GhflnB, (2.7) 

where we have neglected constant (O-independent) terms. The first three terms are of purely 

geometric origin, while the last originates in the gravitational potential of the deflector. The 

condition that T be an extremum (dT/dO = 0 for fixed /3) gives 

which is usually referred to as the lens equation [9]. The solutions give the angular positions 

of the two images: 

with 
2GM 

rfST. (2.9) 

Different signs indicate that the images appear on opposite sides of the deflector. The 

resulting time delay is given by 

AT = TI - T2 = (6’: - @z)L - 2bY.0, - &)L - 4GMln(B,/l&I) (2.10) 

In the limit of small misalignment angle, @ < 7, the image angular positions are approxi- 

mately 
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and the time delay reduces to 

(2.11) 

AT z -4PrjL E -24A0 ~ (2.12) 

where 110 = 81 - 6’2 is the image angular separation. 

For the arguments we will make below, it is useful to bear in mind how lens observations 

in such a simple system could be used to extract cosmological information. If the deflector is 

seen in addition to the two images, then the lens observables are 01, 62, and AT. The observer 

can then infer the misalignment angle from 3 = 01 + 02, and the lens parameter 11 from eq. 

(2.9). Using these observed and derived quantities, eq. (2.10) can be used to determine L. 

(More generally, if the source and observer are not equidistant from the lens, the reasoning 

above determines a distance measure for the lens.) Comparison with the deflector redshift 

then yields an estimate of the Hubble parameter Ho. For deflectors more complex than point 

masses, the observables above must be supplemented by information about the deflector 

potential obtained, e.g., from measurement of the lens’ velocity dispersion. 

C. A Schwarzschild lens with a gravitational wave 

Now we proceed with a similar technique, based on Fermat’s principle, to evaluate the 

time delay induced by a gravitational wave in the symmetric Schwarzschild lens configu- 

ration, with source, deflector, and observer aligned as in Fig. 1. The validity of Fermat’s 

principle in non-stationary spacetimes was recently discussed in the context of gravitational 

lensing problems (lO,ll]. We evaluate the time of travel, integrating eq. (2.2). Instead of 

integrating along straight lines, however, we take the two segments of each zig-zag trial path 

to be null geodesics of the gravitational wave metric, as they would have been in the absence 

of the lensing body. We work up to the order of approximation needed to study terms of 

order hq in the time delay, and we also assume wL7 << 1. This is the most interesting 
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range, since the effect under consideration becomes largest when w,C Y 1. The geodesic 
equations in the metric (2.1), with M = 0. lead to 

dx 
z = 7 - ;hcosw(t, + z + L) 

Here, y is an arbitrary integration constant, the average slope of the trajectory, assumed to 

be small. Note that, as before, in the argument of the cosine in (2.13), we have replaced t by 

t, + z + L; we have also dropped the dependence on z because it is unnecessary to include 

it to evaluate the time delay to order hq, in the limit wLq << 1. The third term in eq. 

(2.2) is the only one where the z-dependence inside the cosine needs to be included, and it 

is enough to do so at zero order. 

Now we choose the integration constants so that a trajectory that starts from s = 0, z = 

-L at t = t,, and deflected by an arbitrary angle in the z = 0 plane, arrives at the observer 

at z = 0; z = L. One finds that 

dx h 
z=-c+22wL --b4L + 2L) - sin&] - ihcos~(t, + -7 + L) if i>O. (2.14) 

Here, E is an integration constant which parametrizes the family of trajectories that meet the 

focusing conditions at the required points. Each trajectory consists of two segments which 

are null geodesics of the gravitational wave metric, neglecting the deflector potential, which 

will be taken into account through Fermat’s principle. According to the latter, the actual 

trajectories are those null paths that extremize the time of travel with respect to variations 

of the parameter E in the metric that includes both the gravitational wave as well as the 

deflector’s potential. 

Before we proceed to extremize, however, we parametrize the trajectories in a different 

way, defining a parameter more relevant to observations, Instead of E, we use the angular 

position of the image, which we denote by 8, relative to the angular position of the deflector, 

at the time of arrival of the images at the observer. We again use equation (2.13) and fix 

the appropriate integration constants to determine the slope of the trajectory of a photon 
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that arrives from the deflector (i.e., the angular position of the deflect,or), which we denote 

by d~~ensld~, 

dx lens 
dz 

= &[sinw(l, + 2L) - sinw(t, + L)] - lhcosu(1, + 2L) (2.15) 
r=L 

Then the angular position 0 of the image with respect to the apparent deflector position is 

&-!!? dx lens 
dz z=~ + dz i=~ =‘+ 

&[sinut, - sinw(t, + L)] (2.16) 

This relates 0 to the parameter E of eq. (2.14). Now the deflection imprinted by the lens 

upon the trajectory at z = 0, which we denote by cy, can be written as 

a-~I*=o_-~(I=o+=2(8-;1,) (2.17) 

where we have defined 

Dg = &[sinw(t,+2L)+sinut, -2sinw(t,+L)] = --$sin2(~)sinw(t,+L). 

(2.18) 

We have defined the quantity pg in such a way that the expression (2.17) for the deflection 

has the same form as eq. (2.6)-in that case, p measured the misalignment between deflector, 

source, and observer in the absence of a gravitational wave, as in Fig. 2. We will see in 

what foilows that in all respects &, plays exactly the same effective role here. 

Next we evaluate the time of travel, integrating eq. (2.2) along the null trajectories 

(2.14), parametrized in terms of 8, and find 

Tx2L+02L-~2~,6L-4GMlnO. (2.19) 

As advertised, this has exactly the form of eq. (2.7), which gave the time of travel for a 

similar lens with no gravitational wave, but with lens and source misaligned by an angle 

/3, as in Fig. 2. Recall that in that case, the first three terms were of geometric origin. 

In the present case, only the first two terms are geometric (they come from integration of 

[l+(dz/dzJ2/2] in (2.2)). The third term, proportional top,, is due to the wave gravitational 
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potential, and comes from integration of the third term in eq. (2.2). Finally, the last term 

is due to the deflector’s gravitational potential. 

The equivalence of expressions (2.7) and (2.19) leads to our main conclusion: the lens 

equation in the presence of a gravitational wave is, to the order of approximation considered, 

completely equivalent to that of a similar lens with a different alignment and no gravity wave. 

The effective misalignment angle pg is given by eq. (2.18) in terms of the wave parameters. 

The analogy is exact only in the limit wLq < 1, but this is the interesting range in any case, 

because rl << 1 and time delays are largest for WL 5 1. Since /3g depends upon time, the 

analogy is only valid over periods of time much shorter than W-‘. Again, since the effect is 

relevant only for waves of cosmological wavelengths, this time-variation of the time delay is 

observationally irrelevant. 

From eq. (2.19), the time delay between the two images is given by expression (2.10) 

with the substitution 0 -+ &, 

AT = Tl - T2 = (6’: - Si)L - 2,Bg(& - 02)L - 4GMln(Br/]&]) (2.20) 

So far, we have made no assumption about the relative amplitudes of the gravitational wave 

effect, /Yg N h, and the deflector Einstein ring angular radius 11 (Cf. eq. (2.9) ). However, if 

&, >> 7, the effect of the wave is equivalent to that of a system very much out of alignment. 

In this limit, the magnification of the second image goes to zero as (~//3,)~, and multiple 

image formation effectively does not take place. 

In the opposite limit, /3a < 11, Fermat’s principle leads to the same result as eq. (2.12), 

but with &replaced by the effective &, of eq. (2.18), 

AT-- 4&7L = 43 sin’ 
w 

(2.21) 

This result coincides with that of eq. (2.5), obtained through integration and is just Allen’s 

result [4]. Note that the additional term originating in a path length difference, (0: - 

@L, cancels the term due to the deflector’s gravitational potential, 4GMln(Br/]fJs]). The 

wave-induced distortion of the photon paths is not negligible, however, when it comes to 

interpreting the result. 
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Indeed, suppose the observer of this lens has no knowledge of the possible existence 

of gravitational waves, and seeks to measure, e.g., the deflector mass I!+’ or the Hubble 

parameter HO from her observations. The effect of the gravit,y wave upon the apparent 

angular positions of the images and the deflector would trick the observer into believing he or 

she sees an ordinary misaligned lens. Moreover, the observer’s inference of the misalignment 

angle pa from the observed image angular positions, pg = 0r + 6’2, and the observed image 

time delay would all be in accord with this belief, and he or she will infer the correct values 

for JM and Ho, even though taking no account of gravitational waves and instead assuming a 

homogeneous and isotropic spacetime (aside from the deflector). That is, while the gravity 

wave does cause a time delay, it covers its own tracks in a misalignment change, leaving 

no measurable trace of its presence, and can be safely and consistently ignored by the lens 

observer. Thus it appears impossible to use time delay measurements to detect cosmological 

gravitational waves even in principle. 

For completeness, we emphasize that this conclusion holds even if p ;2 17, but that it is 

only in the limit pg < n that the time delay agrees with eq. (2.5). 

III. TIME DELAY IN A THIN LENS WITH GRAVITATIONAL WAVES 

In this section we show how the conclusions reached above can be generalized to the 

case of an arbitrary thin gravitational lens with gravitational waves of arbitrary polarization 

and direction of propagation. First we briefly review the features of a general lens when 

no gravitational waves are present. We assume,-as usually,applies for cases of astrophysical 

interest;a thin, stationary gravitational lens, such that~ theweak field approximation is valid 

191. Consider a lens geometry as in Fig. 2, only now we do not assume that the photon paths 

lie in the plane that contains source, deflector, and observer: e’ and p’ are two-component 

angular vectors, that give angular positions at the observer’s location, a’ is the deflection, 
- 

and < = LB determines the impact parameter in the deflector plane. The condition that 

the photons from the source reach the observer implies the following relation, the vectorial 
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generalization of eq. (2.6): 

IS=2 (s’-,Z), (3.1) 

and the time of travel is given by: 

T=2L+[@L-2$.s’L-$(fl, (3.2) 

which is the generalization of eq. (2.7). The last term originates in the deflector gravitational 

potential, and is given, for a thin lens, by 

$@j = 4Gj d’<’ C(.f)ln , (3.3) 

where C is the mass density projected on the lens plane. Note that this term depends only 

upon the impact parameter <, reflecting the fact that in the thin lens approximation the 

effect of the gravitational potential of the lens is dominated by that part of the trajectory 

closest to the deflector. Here Es is an arbitrary length scale. Following Fermat’s principle, 

we extremize the time of travel with respect to Band arrive at the lens equation: 

Notice that a@Jae’= L&+b,ld.f. Th e solutions to this equation give the angular positions of 

the images. 

Now we show the equivalence between the effect of a gravitational wave and an effective 

lens misalignment. Consider a lens geometry with deflector, source, and observer aligned at 

z = 0, -L, L respectively, as in Fig. 1, along the t-axis. Let U be the gravitational potential 

of the deflector. Consider a gravitational wave propagating at an angle 6 with respect to 

the lens axis. We take the (z, 2) plane as that containing the lens axis and the direction of 

propagation of the gravitational wave. The metric perturbation caused by the wave can be 

expressed as: 

hij = 

- co?? 8 h+ -cos8 h, sin 19 cos 13 h, 

-cost9 h, h+ sin19 h, 

sin 29 cos 21 11, sin0 h, -sin*8 h+ 

14 
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with propagation vector I;’ = cJ(sinr9,0,cos~). and h+ and h, the amplitudes of the two 

wave polarizations. The total metric is then given by: 

ds2 = (1 + 2U)dt’ - (1 - 2U)(dx2 + dy* + dz’) + hijdx’d.zy (3.6) 

Along a null path, the time of travel is given by 

Tg/_t. di[1+1(~)2+1(~)2+~h~j~~-2C] 

Notice that J 2U dz is the same as what we had previously defined by $J in eq. (3.2). 

We now define a family of null trial paths along which we will integrate eq. (3.7). Each 

path is built out of two segments deflected by an angle a’ at the deflector plane. Instead of 

taking straight trajectories, we let each segment be a solution of the geodesic equations in 

the presence of the gravitational wave, neglecting the potential U of the deflector, since its 

effects are later taken into account through Fermat’s principle. The condition that a photon 

from the source at (z, y = 0, z = -L) reaches the observer at (x, y = 0, z = L) defines a 

one-parameter family of trajectories parametrized by an arbitrary vector C= (cZ,c,): 

$= c2 - : sin 29( 1 - cos 19) cos u(te + L + z( 1 - cos 8)) 

$= cy + h, sin B cosw(t, + L i ~(1 - cos 0)) if z<O , 

dx h+ 
x= -ez + 2wL ----sin+inw(t, + L(2 - costi)) - sinw(t, + Lcos~)] 

-%sinti(l- cos19)cosw(t, + L + ~(1 - ~0~89)) 

4v hx sin ’ 
Z’ -54 - X(1 - costi) 

[sin w(te + L(2 - cos 19)) - sinw(l, + L cos 79)] 

+h, sinBcosw(t, + L + ~(1 - costi)) if z>O. (3.8) 

The wave also affects the apparent position of the deflector; as before, we change variables 

from <‘to the relative angular position between the image and the deflector at the observer’s 

position, which we denote by 8: We find the relation (assuming wLB << 1): 

e= (E,, Ey) + 
h+ sin21 -h, sin9 

2wL ’ wL(1 - cost9) 
[sinw(t, + LcosO) - sinw(t, + L)] (3.9) 
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The deflection 15 imprinted upon the trajectory a,t the lens plane z = 0 can be written as 

& = 2(fT- &) (3.10) 

if we define gg as 

fig ~ 
( 
ksin8 -h, sin29 
4wL ’ 2wL (1 - cos.21) 1 

x[sinw(te + L(2 - COSO)) +.sinw(t, + Lcosfl) - 2sinw(r, + L)] 

=- ( Lsind -h, 2sin29 
WL ’ WL (1 - coszy) sm ) 1 

4+- ] cos19) sinw(t, + L) (3.11) 

Of course. eqs. (3.9) and (3.11) reduce to our previous eqs. (2.16) and (2.18) in the case 

19=T/2,h,=O. 

Now we are ready to find the time of travel, integrating eq. (3.7). One important thing 

to note is that, for a thin lens, integration of the last term in (3.7), the contribution of the 

deflector gravitational potential U, gives -g(c), where f= ?(z = 0) is the impact parameter 
- + 

of the trajectory. And, if wL0 << 1, the relation < = LB still holds, as in the absence of a 

gravitational wave. At the end, we find for the total time of travel: 

T=2Lt-/~2L-2&.~L-~(L~) ( (3.12) 

Since this has exactly the same functional dependence on s’ as in eq. (3.2), we confirm the 

equivalence between an aligned lens in the presence of a gravitational wave and a lens with 

an effective lack of alignment given in terms of the wave parameters by fig of eq. (3.11). 

In the special case of an axially symmetric lens and in the limit 181 << I;[, the solutions 

&,s to the lens equation lie in the plane that contains the lens axis and the direction of egg, 

That plane forms an angle 4 with the plane that contains the gravitational wave propagation 

vector (which we took as the (z, z) plane) such that 

tan& = fi = -h 
92 + 

The solutions are then of the form 

(3.13) 

91.2 =: *++a$, (3.14) 
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with 

77 = ~(~0s C$ sin 4) ; ,=2-c? 
2L as o=q 

(3.15) 

a solution to the unperturbed lens equation, and a a coefficient that depends upon the lens 

model: 

a-1 - --1_,a’ll, 
2L al9 + 

(3.16) 

For instance, a = l/2 for a Schwarzschild lens, where $I = 4GM In 8, and o = 1 for a singular 

isothermal sphere, where ?I, = 4nCzB, with Xv the velocity dispersion. For a non-singular 

lens, there must be an odd number of images; in that case, eq. (3.14) refers, say, to the 

outer two images (the central third image is usually de-magnified). 

The time of travel for these solutions can be expanded as 

Tl.2 = 2L + (I# + 24. ij)L + 26. f/L - $(kLfj) - a/T. sigz*, 

Using the unperturbed lens equation (3.15) we see that the two contributions to the time of 

travel proportional to ap’, one of geometric origin and the other due to the deflector’s grav- 

itational potential, cancel each other. Besides, $(Lfj) = $(-Lfj) for an axially symmetric 

lens. Finally, the time delay between two images for a thin, axially symmetric lens, in the 

limit 161 << 1111 and with wLq << 1 is 

AT-- - - 417 
4P.VL= ;sln29 

2sinf$ 
h+cOs~+h,(l -cos29) T(l- ] COs 0) sin w(te + L) , 

(3.18) 

where 4 is the angle between the plane containing the photon trajectories and the plane 

that contains the gravitational wave propagation vector, as given by (3.13). In the limit 

pg << n, expression (3.18) agrees with that of Ref. 141, evaluated through integration of the 

Sachs-Wolfe formula along unperturbed photon paths. 
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IV. CONCLUSIONS 

We have shown that the lens equation for a thin, axially aligned gravitational lens con- 

figuration in the presence of a very long wavelength gravitational wave is equivalent to that 

of a similar lens with the source out of alignment and no gravitational wave. An observer 

who measures time delays, angular positions, or any other observables such as relative mag- 

nifications and redshifts, and uses them to reconstruct the lens configuration, cannot tell 

the two situations apart. Thus, an observer ignorant of gravitational waves would naturally 

and ‘correctly’ interpret the observations as a simple non-aligned lens. This conclusion is 

valid if wLq << 1, which is the interesting range since the induced time delays are largest 

when WL x 1. We performed our calculations around an aligned lens configuration and with 

source and observer equidistant from the deflector, but it is clear that the conclusion holds 

in more general cases: the effect of a long wavelength gravitational wave upon a lens with 

a given geometry is equivalent, from the observer’s viewpoint, to an effective change of lens 

geometry. Consequently, measuring time delays in gravitational lenses does not provide a 

method for probing a cosmological background of gravitational waves, 

Formally, Allen’s result for the wave-induced time delay is correct in the small amplitude 

limit: for Dg << n, eq. (3.18) for the time delay induced by a gravitational wave upon a 

thin, axially symmetric lens agrees with that of Ref. [4]. In the opposite limit, & > 7, the 

effect of the gravitational wave is equivalent to a change in the alignment between source, 

deflector, and observer by an amount that exceeds the typical deflection angle the deflector 

can imprint, precluding the formation of multiple images in the case of an aligned lens. In 

this case, multiple images can only form if there is a compensating geometric misalignment 

between source and deflector, and the geometric delay will partially cancel the lens-induced 

delay. h >> 17, the total time delay does not exceed the typical intrinsic lens time delay 

of order L$. Moreover, in either limit, the measured time delay is just what the observer 

would expect in the complete absence of gravitational waves, based on her measurements of 

the lens observables. 
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The detection by the COBE satellite [2] of a quadrupole anisotropy in the cosmic mi- 

crowave background places a bound h 5 6 x 10m6 on the amplitude of cosmological gravita- 

tional waves. If a large fraction of the anisotropy detected by COBE is due to gravitational 

waves, a possibility that can be accommodated by many inflationary cosmological models 

[7,3], then the wave-induced time delays between multiple images of quasars are comparable 

to typical intrinsic lens time delays, with 7 x lo-‘. One could have hoped that careful 

lens modelling could allow one, at least in principle if not in practice, to separate the wave- 

induced from the intrinsic time delay, and thus reveal the presence of the gravitational waves. 

Our work indicates that this is not a possibility. 
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Ficure 1: The geometry of an aligned lens. The deflector is a point mass M at the origin 

of coordinates. Source and observer lie along the z-axis, equidistant from the deflector. 

The observer sees two images of the same source (actually an Einstein ring) with angular 

separation 217. The trajectories are approximated by straight segments. 
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Figure 2: The geometry of a non-aligned lens. The source forms an angle p with respect 

to the line that joins observer and deflector. & and 62 are the angular positions of the 

images, {is the impact parameter, and a’ the deflection angle. 

22 


